

# METHODS OF ESTIMATING NON-RESPONSE OF MULTI-AUXILIARY INFORMATION WITH APPLICATION

Hisham Mohamed Almongy<sup>1</sup> & Ehab Mohamed Almetwaly<sup>2</sup>

<sup>1</sup>Lecturer of Applied Statistics, Faculty of Commerce Mansoura University, Egypt <sup>2</sup>Demonstrator of Statistics, Higher Institute of Computer and Management Information Systems, Egypt

#### **ABSTRACT**

Sampling methods are often accompanied by sampling errors in collecting data. They have associated with the design the chosen sample which can be handled in some way or another based on theoretically known styles in this field or by using the comprehensive census type. However, the people concerned with preparing and implementing statistical work face non-random errors. Which are not less dangerous than errors connected with sampling method. Whether what has been chosen partially of the population or by containing all items. These non-random errors weaken the collected data efficiency. Because it is difficult to discover or to know: That is due to non-technical methods to handle them. In this paper focuses on the estimation of non-response of multi-auxiliary information of a finite population and infinite population. A comparison study is made between three methods of estimation using the multi-auxiliary information; these methods are multi-mean imputation, multi-ratio method of imputation and multi-power transformation method of imputation, through a randomized response technique. The relative efficiency was used to conclude the best methods by using empirically study (real data and simulation).

KEYWORDS: Multi-Auxiliary Information, Multi-Ratio Estimator, Multi-Power Transformation, Empirical Study

## Article History

Received: 15 May 2018 | Revised: 05 Jul 2018 | Accepted: 10 Jul 2018

## **1. INTRODUCTION**

Sampling methods are often accompanied by sampling errors in collecting data. They have associated with the design the chosen sample which can be handled in some way or another based on theoretically known styles in this field or by using the comprehensive census type. However, the people concerned with preparing and implementing statistical work face non-random errors. Which are not less dangerous than errors connected with sampling methods. Data are subjected to non-random errors, whether collected from some items of the population or all the components of the population, meaning that, they do not decrease by increasing size of the sample as in the random errors. Missing data is a very common problem in most empirical research areas. The problem of missing data in survey sampling is called the problem of nonresponse. Missing data is present if the researcher fails to get the information from the sample. Different reasons can cause non-response such as the investigator refusal to answer, inaccessible, unable to answer, lack of information and so on. These non-random errors weaken the collected data efficiency because it is difficult to discover or to know. That is due to non-technical methods to handle them, where the non-response or missing data represents a huge problem in many studies

and scientific researches Singh and Deo (2003). Undoubtedly, the sometimes of failure to account for the stochastic nature of missing data or nonresponse data can spoil the nature of data. Nature incomplete random data may be lead to distort the nature of original data. The auxiliary information has been used in improving the precision of the estimate of a parameter (see Cochran (1977)). Auxiliary variables are used to improve the efficiency of estimators at the estimation stage and it could be available in several forms. These errors are divided into complete non- responsiveness or partial non- responsiveness. The efficiency of a biased estimator is measured by the reciprocal of the amount of its mean square error (MSE). Thus the smaller the MSE the more the precision/efficiency of the estimator. In many sample surveys reduction in MSE, even by a very small amount, plays an important role and increases efficiency significantly of the over-all estimators. For more details on such methods, one can refer to Singh (2001), Singh and Horn (2000), Bratley. et al (2011), Aziz (2015) and Garcia and Cebrian (1996).

Assuming simple random sampling, we present three methods of estimation, Multi-Mean, Multi-Ratio and Multi-Power Transformation to estimate Non-Response of Multi-Auxiliary Information. In general, the power transformation estimator is shown to possess a smaller variance than the Mean and the Ratio estimators, see Almongy (2012). We compare between the results of these methods of estimation using empirical study.

# 2. MULTI-AUXILIARY INFORMATION

Let  $\overline{Y} = N^{-1} \sum_{i=1}^{N} y_i$  be the mean of the finite population  $\Omega = \{1, 2, ..., N\}$ , a simple random sample withoutreplacement, *s* of size *n* is drawn from  $\Omega$  to estimate  $\overline{Y}$ . Let *r* be the number of responding units out of sampled *n* units. Let the set of responding units be denoted by *A* and that of non-responding units be denoted by  $A^{\setminus}$ . For every unit  $i \in A$ , the value  $y_i$  is observed. However, for the units  $i \in A^{\setminus}$ , the  $y_i$  values are missing and imputed values are derived. We assume that imputation is carried out with the aid of multi-auxiliary variable,

$$X = (x_{ij})_{n \times n}, (i = 1, 2, ..., n; j = 1, 2, ..., p)$$

Such that  $x_{ij}$ , the value of x for unit *i*, and auxiliaryvariable *j*, is known and positive for every $i \in s = A \cup A^{\setminus}$ . In other words, the data  $X_{js} = \{x_{ij} : i \in s\}$  are known. Following the notation of the Singh and Deo (2003). Singh and Deo (2003) present the case of single value imputation depending single auxiliary variable, but we present the case of single value imputation depending on multi-auxiliary variables. Let

 $X = (x_{ij})_{n \times p}, (i = 1, 2, ..., n; j = 1, 2, ..., p)$  be the  $n \times p$  matrix of the *p*-auxiliary vectors associated with the study variable *y*, such that

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix} = (x_{ij})_{n \times p}$$

It is assumed that full information is available on the multi-auxiliary variables, but responses are missing only for the study variable. In this situation, we suggest here some method of imputation following the notation of the Singh and Deo (2003).

#### 2.1. Multi-Mean Imputation

Under the mean method of imputation, the data after imputation take the form

Methods of Estimating Non-Response of Multi-Auxiliary Information with Application

$$y_i^{\star} = \begin{cases} y_i \, if \, i \in A \\ \overline{y}_r \, if \, i \in A \end{cases}$$

$$\tag{1}$$

where

$$\overline{y}_{mm} = r^{-1} \sum_{i=1}^{r} y_i = \overline{y}_{r'}$$
<sup>(2)</sup>

$$\overline{y}_s = \frac{1}{n} \sum_{i=1}^n y_i^\star,\tag{3}$$

such that

$$\overline{y}_r = r^{-1} \sum_{i=1}^r y_i$$
,  $\overline{x}_{rj} = r^{-1} \sum_{i=1}^r x_{ij}$  and  $\overline{x}_{sj} = n^{-1} \sum_{i=1}^n x_{ij}$ 

## 2.2. Multi-Ratio Estimator

This method of imputation is called the multi-ratio method of imputation. Under this method of imputation, the data becomes

$$\mathbf{y}_{i}^{\star} = \begin{cases} \mathbf{y}_{i}, i \in A \\ \\ \mathbf{y}_{r}^{\star} \left[ \mathbf{n} \prod_{j=1}^{p} \left( \frac{\overline{x}_{nj}}{\overline{x}_{rj}} \right) - \mathbf{r} \right] \frac{\sum_{j=1}^{p} x_{ij}}{\sum_{i \in A} \sum_{j=1}^{p} x_{ij}}, i \in A \end{cases}$$
(4)

and the point estimator of  $\overline{y}_{mR}$  becomes

$$\overline{\mathbf{y}}_{mR} = \overline{\mathbf{y}}_r \prod_{j=1}^p \left( \frac{\overline{\mathbf{x}}_{nj}}{\overline{\mathbf{x}}_{rj}} \right)$$
(5)

Which is clearly multi-ratio type estimator as proposed by Olkin (1958).

The estimator obtained from the multi-ratio method of imputation has shown to remain better than the estimator obtained from the multi-mean method of imputation.

#### 2.3. Multi-Power Transformation

Singh and Deo (2003) suggested this method of imputation where,

$$y_{i}^{\star} = \begin{cases} y_{i}, i \in A \\ \\ \overline{y}_{r} \left[ n \prod_{j=1}^{p} \left( \frac{\overline{x}_{nj}}{\overline{x}_{rj}} \right)^{\alpha_{j}} - r \right] \frac{\sum_{j=1}^{p} x_{ij}}{\sum_{i \in A} \sum_{j=1}^{p} x_{ij}}, i \in A^{\setminus} \end{cases}$$
(6)

where  $\alpha_j$  is a suitably chosen constant, such that the variance of the resultant estimator is minimum, and  $\prod_{j=1}^{p} x_j = x_1 x_2 \dots x_p$  denote the product of p-terms. Under this method of imputation, the point estimator of  $\overline{y}_s$  becomes

$$\overline{y}_{mP} = \overline{y}_r \prod_{j=1}^p \left(\frac{\overline{x}_{nj}}{\overline{x}_{rj}}\right)^{\alpha_j}$$
(7)

Which is a generalization of Srivastava (1967) estimator for multi-auxiliary information. In these situations, we are suggesting an estimator as

$$\alpha_j = \frac{\bar{x}_{rj} s_{x_j y}}{\bar{y}_r s_{x_j}^2}$$

www.iaset.us

Since  $S_{x_j}^2$  is a variance of Auxiliary variable  $x_j$  and  $S_{x_jy}$  is a covariance of Multi-Auxiliary variables following Cochran (1977), the minimum variance of the estimator  $\overline{y}_{mP}$  is given by

$$V(\overline{y}_{mP}) = \left(\frac{1}{n} - \frac{1}{N}\right) S_y^2 \left(1 - R_{y,x_1 x_2 \dots x_p}^2\right)$$
(8)

where  $R_{y,x_1x_2...x_p}$  denotes the multiple correlation coefficient.

Following Rao and Sitter(1995), it is not clear how to use multi-auxiliary information while doing imputation with ratio method of imputation. Use of multi-auxiliary information in survey sampling has more practical use than using the single variable.

Almongy(2012), proved theoretically that the estimator obtained from the power transformation method of imputation has shown to remain better than the estimator obtained from the ratio method of imputation and hence the mean method of imputation. One can easily observe that if  $\alpha_j = 1 \forall j = 1, 2, ..., p$  then, the multi-power method of imputation becomes the multi-ratio estimator. The multivariate product estimator can be easily derived by choosing  $\alpha_j = -1 \forall j = 1, 2, ..., p$ .

## **3. EMPIRICAL STUDY**

For the purpose of the empirical study, we consider two types of population finite populations (Real Data), and infinite populations (Simulation). The method discussed in the previous section is not practicable if the optimum value of  $\alpha_j$  is unknown, but fortunately the optimum value of  $\alpha_j$  is given.

#### 3.1. Real Data

**Case 1:** This study will show that the multi-power transformation method over the multi-ratio method of imputation and hence the multi-mean method of imputation, we resort to the empirical study with finite populations available. We consider a finite population of N = 15 units given by Neter. et al (1983). We select all possible samples of n=7, 6, 5 units, which results in

 $M = {\binom{15}{n_i}} = 6435,5005,3003 \text{ samples}$ ; i = 1,2,3 respectively and we remove  $m_i = 1,2,3,4$  units randomly from each sample corresponding to the study variable y. Then the removed units were imputed with three methods:

- Multi-Mean method,  $\overline{y}_0(\text{say})$ .
- Multi-Ratio (or product) method,  $\overline{y}_{R}$ , depending upon the sign of correlation.
- Multi-power transformation method with  $\alpha = \hat{\alpha}$ , say  $\overline{y}_{p}$ .

$$RE. j = \frac{\sum_{s=1}^{M} \left[ (\overline{y}_0)_s - \overline{Y} \right]^2}{\sum_{s=1}^{M} \left[ (\overline{y}_j)_s - \overline{Y} \right]^2} \times 100, j = R, P$$
(9)

The relative efficiency of the multi-ratio (RE, R) and the multi-power (RE, P) with respect to multi-mean method of imputation is shown in Table 1. The same process is repeated with other finite populations (Table 2.) as shown in Table 1.

|     | $m_1 = 1$ |         | $m_2 = 2$ |         | $m_3$   | = 3      | $m_4 = 4$ |         |  |
|-----|-----------|---------|-----------|---------|---------|----------|-----------|---------|--|
|     | RE.R      | RE.P    | RE.R      | RE.P    | RE.R    | RE.P     | RE.R      | RE.P    |  |
| n=7 | 119.168   | 121.874 | 121.851   | 128.064 | 236.372 | 256.289  | 374.497   | 415.251 |  |
| n=6 | 122.540   | 124.013 | 136.771   | 143.036 | 272.531 | 280.616  | 472.615   | 548.634 |  |
| n=5 | 112.079   | 114.93  | 206.593   | 220.619 | 273.388 | 364.9043 | 531.497   | 652.465 |  |

 
 Table 1: Relative Efficiency of the Multi-Ratio and Multi-Power Methods of Imputation with Respect Tomulti-Mean Method of Imputation

**Case 2:** In this section, we consider a finite population of N = 25 units given by Montgomery and et al (2010). We select all possible samples of n = 6, 5 units, which results in

$$M = \binom{25}{n_i} = 177100,53130$$
 samples; i = 1,2 respectively and we remove  $m_i = 1, 2, 3$  units randomly from

each sample corresponding to the study variable y.

 Table 2: Relative Efficiency of the Multi-Ratio and Multi-Power Methods of Imputation with Respect to Multi-Mean Method of Imputation

|     | $m_1$ = | = 1     | $m_2$   | = 2     | $m_3 = 3$ |         |  |
|-----|---------|---------|---------|---------|-----------|---------|--|
|     | RE.R    | RE.P    | RE.R    | RE.P    | RE.R      | RE.P    |  |
| n=6 | 100.226 | 109.688 | 208.889 | 479.416 | 241.482   | 501.321 |  |
| n=5 | 100.492 | 115.697 | 251.018 | 512.996 | 243.172   | 518.509 |  |

We notice the greater the number of missing then increase of efficiency obviously, since if decrease value of a number of sample size and increase value of the number of missing data then increase efficiency. Almongy (2012), concluded that there are no significant differences between the relative efficiency of the estimation methods, which are presented in this paper when we find that the number of missing units is very few.

#### 3.2. Simulation

The size N of these populations is unknown. We generated n random numbers,  $y_i^*$ , i = 1, 2, ..., n, from a transformed variables, given by

$$y_{i} = \mathbf{10.0} + \sqrt{S_{y}^{2}(1 - \rho_{x_{1},y}^{2})}y_{i}^{*} + \rho_{x_{1},y}S_{y}x_{i1}^{*} + \sqrt{S_{y}^{2}(1 - \rho_{x_{2},y}^{2})}y_{i}^{*} + \rho_{x_{2},y}S_{y}x_{i2}^{*}$$
(10)

and  $x_{i1} = 50.0 + S_{x_1} x_{i1}^*$  and  $x_{i2} = 50.0 + S_{x_2} x_{i2}^*$  for different values of the correlation coefficient  $\rho_{x_1,y}$  and  $\rho_{x_2,y}$  and  $\overline{Y} = 10.0$ . We generate 10,000 samples each of size *n*. From the *Kth* sample of *n* units, we removed randomly (n - r) units and the remaining sample units were considered to be responding. The missing values are imputed by using different methods of imputation. The empirical mean square error of the resultant estimators is computed as

$$MSE\left(\bar{y}_{j}\right) = \frac{1}{10,000} \sum_{k=1}^{10,000} \left[\bar{y}_{j_{k}} - \bar{Y}\right]^{2}, j = m, R, P$$
(11)

The relative efficiency of the estimators based on proposed methodwith respect to usual estimator is calculated as

$$RE. j = \frac{MSE(\overline{y}_m)}{MSE(\overline{y}_j)} \times 100, j = R, P$$
(12)

The results obtained are shown in Table 3. We conclude that the estimator  $\overline{y}_p$  remains better than  $\overline{y}_j$ , j = m, R. Due to symmetric relationship of the efficiency of the multi-ratio (RE.R) and the multi-power (RE.P) of estimator with respect to sample mean, A the nonresponse rate Pr. m is (25%, 40%, 50%, 60% and 75%) from all samples, the relative efficiency figures remains almost the same for the given value of correlation coefficient. For example in Table 3, let that the  $y, x_1 and x_2$  have gamma distribution with a parameters y and  $x_1 \sim gamma(2, 18)$  and  $x_2 \sim gamma(2, 10)$ , as shown in the following tables.

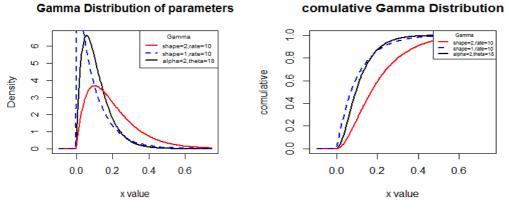


Figure 1: Plot Gamma Distribution

From table, 3.we find that, if Pr.m=25% rate of non-response is available then the gain in efficiency of the multiratio estimator remains between 13% to 17% and the multi-power estimator remains between 15% to 26% for  $\rho_{yx_1} = 0.5$  and  $\rho_{yx_2} = 0.5$ . As the value of correlations coefficient increases to 0.9, then the corresponding values of the gain in efficiency of the multi-ratio estimator lies between 147% to 156%, but that of the multi-power estimator lies between 198% to 212%.

From table, 3.We find that, if Pr. m = 40% rate of non-response is available then the gain in efficiency of the multi-ratio estimator remains between 13% to 18% and the multi-power estimator remains between 15% to 27% for  $\rho_{yx_1} = 0.5$  and  $\rho_{yx_2} = 0.5$ . As the value of correlations coefficient increases to 0.9, then the corresponding values of the gain in efficiency of the multi-ratio estimator lie between 145% to 156%, but that of the multi-power estimator lie between 196% to 222%, and so on.

| $\rho_{yx_1} = 0.5, \rho_{yx_2} = 0.5, y$ , and $x_1$ Have Gamma~(2,18), $x_2$ Has Gamma~(2,10) |         |               |                  |                           |           |           |                         |          |             |         |  |  |
|-------------------------------------------------------------------------------------------------|---------|---------------|------------------|---------------------------|-----------|-----------|-------------------------|----------|-------------|---------|--|--|
|                                                                                                 | Pr.m:   | =25%          | Pr.m=40%         |                           | Pr.m=50%  |           | Pr.m=60%                |          | Pr.m=75%    |         |  |  |
|                                                                                                 | RE.R    | RE.P          | RE.R             | RE.P                      | RE.R      | RE.P      | RE.R                    | RE.P     | RE.R        | RE.P    |  |  |
| n=20                                                                                            | 113.94  | 126.256       | 113.172          | 127.102                   | 110.906   | 124.2     | 113.318                 | 126.641  | 111.859     | 123.541 |  |  |
| n=50                                                                                            | 114.826 | 120.292       | 116.485          | 122.082                   | 115.255   | 120.322   | 115.994                 | 120.762  | 113.425     | 118.925 |  |  |
| n=80                                                                                            | 118.482 | 121.172       | 116.988          | 120.36                    | 114.448   | 118.03    | 111.753                 | 116.161  | 112.787     | 116.863 |  |  |
| n=100                                                                                           | 116.92  | 119.922       | 118.378          | 121.002                   | 115.851   | 119.377   | 114.769                 | 118.418  | 114.077     | 118.134 |  |  |
| n=150                                                                                           | 114.813 | 118.175       | 116.359          | 118.533                   | 115.681   | 118.218   | 115.503                 | 118.731  | 114.376     | 117.144 |  |  |
| n=200                                                                                           | 116.938 | 117.8         | 116.06           | 117.819                   | 117.059   | 119.458   | 116.897                 | 119.019  | 116.348     | 118.117 |  |  |
| n=250                                                                                           | 113.531 | 116.54        | 113.28           | 115.616                   | 114.786   | 116.841   | 115.016                 | 117.185  | 115.003     | 116.857 |  |  |
| n=300                                                                                           | 114.309 | 115.64        | 115.116          | 116.861                   | 115.402   | 116.948   | 114.042                 | 115.769  | 115.729     | 117.306 |  |  |
| n=350                                                                                           | 115.321 | 117.066       | 115.345          | 117.099                   | 115.909   | 117.013   | 114.681                 | 115.902  | 116.821     | 117.673 |  |  |
| n=400                                                                                           | 115.256 | 116.526       | 116.346          | 117.082                   | 115.273   | 117.28    | 115.338                 | 117.347  | 114.689     | 117.721 |  |  |
|                                                                                                 | ρ       | $yx_1 = 0.6,$ | $\rho_{yx_2}=0.$ | 6, <i>y</i> ,and <i>x</i> | a Have Ga | amma~(2,1 | 8),x <sub>2</sub> Has G | amma~(2, | <b>10</b> ) |         |  |  |
|                                                                                                 | Pr.m:   | =25%          | Pr.m:            | =40%                      | Pr.m=50%  |           | Pr.m=60%                |          | Pr.m=75%    |         |  |  |
|                                                                                                 | RE.R    | RE.P          | RE.R             | RE.P                      | RE.R      | RE.P      | RE.R                    | RE.P     | RE.R        | RE.P    |  |  |
| n=20                                                                                            | 124.915 | 138.702       | 124.412          | 138.217                   | 122.367   | 136.652   | 122.142                 | 136.611  | 124.725     | 139.062 |  |  |
| n=50                                                                                            | 126.407 | 131.799       | 126.851          | 130.965                   | 127.926   | 132.409   | 127.05                  | 131.921  | 126.459     | 130.901 |  |  |
| n=80                                                                                            | 129.987 | 133.175       | 128.83           | 131.101                   | 127.5     | 129.393   | 127.055                 | 129.056  | 125.604     | 128.366 |  |  |
| n=100                                                                                           | 126.782 | 128.68        | 128.33           | 131.639                   | 130.032   | 133.288   | 128.258                 | 131.343  | 127.339     | 129.853 |  |  |

Table 3: Relative Efficiency of Multi-Ratio and Multi-Power Method of Multi-Auxiliary Variables

| n=150 | 129.857 | 131.076 | 130.979 | 131.759 | 128.278 | 129.67  | 128.497 | 130.09  | 131.175 | 132.094 |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| n=200 | 126.279 | 127.498 | 125.353 | 126.553 | 127.235 | 128.741 | 126.038 | 127.497 | 124.365 | 125.669 |
| n=250 | 127.74  | 128.554 | 128.287 | 129.136 | 128.17  | 128.903 | 126.224 | 126.806 | 127.401 | 127.984 |
| n=300 | 131.903 | 133.219 | 132.579 | 133.425 | 132.63  | 133.394 | 131.352 | 132.245 | 127.385 | 128.163 |
| n=350 | 126.346 | 126.749 | 125.251 | 125.727 | 127.764 | 128.565 | 127.197 | 128.197 | 127.384 | 128.667 |
| n=400 | 129.106 | 129.795 | 128.012 | 128.358 | 124.131 | 124.71  | 123.557 | 123.775 | 125.34  | 126.001 |

# Follow Table 3

|       | $\rho_{yx_1} = 0.7, \rho_{yx_2} = 0.7, y, and x_1$ Have Gamma~(2,18), $x_2$ Has Gamma~(2,10) |                   |                                 |                                                 |          |           |                  |          |         |          |  |  |
|-------|----------------------------------------------------------------------------------------------|-------------------|---------------------------------|-------------------------------------------------|----------|-----------|------------------|----------|---------|----------|--|--|
|       |                                                                                              | =25%              | Pr.m=40%                        |                                                 | Pr.m=50% |           | Pr.m=60%         |          | Pr.m=   | 75%      |  |  |
|       | RE.R                                                                                         | RE.P              | RE.R                            | RE.P                                            | RE.R     | RE.P      | RE.R             | RE.P     | RE.R    | RE.P     |  |  |
| n=20  | 144.691                                                                                      | 158.494           | 143.481                         | 161.285                                         | 141.819  | 156.864   | 144.241          | 159.365  | 140.184 | 153.059  |  |  |
| n=50  | 144.237                                                                                      | 151.053           | 143.722                         | 150.942                                         | 144.134  | 150.479   | 145.524          | 152.497  | 146.532 | 154.638  |  |  |
| n=80  | 147.986                                                                                      | 153.613           | 147.791                         | 153.173                                         | 144.829  | 149.409   | 144.379          | 148.703  | 145.219 | 148.845  |  |  |
| n=100 | 148.696                                                                                      | 153.081           | 145.736                         | 150.067                                         | 144.176  | 148.773   | 142.709          | 146.496  | 142.213 | 144.7    |  |  |
| n=150 | 145.992                                                                                      | 148.548           | 147.264                         | 150.104                                         | 146.465  | 148.578   | 146.917          | 149.261  | 147.075 | 150.224  |  |  |
| n=200 | 142.893                                                                                      | 144.209           | 144.857                         | 146.533                                         | 143.645  | 145.745   | 142.223          | 143.509  | 142.3   | 143.577  |  |  |
| n=250 | 146.481                                                                                      | 149.057           | 144.669                         | 147.312                                         | 146.106  | 149.072   | 147.053          | 149.995  | 148.776 | 152.237  |  |  |
| n=300 | 147.941                                                                                      | 150.484           | 149.39                          | 152.95                                          | 151.593  | 155.6     | 149.839          | 153.168  | 148.345 | 150.823  |  |  |
| n=350 | 146.895                                                                                      | 148.669           | 143.7                           | 145.853                                         | 141.975  | 143.705   | 143.382          | 145.146  | 142.281 | 143.421  |  |  |
| n=400 | 151.903                                                                                      | 154.524           | 149.569                         | 152.02                                          | 150.312  | 153.401   | 149.705          | 152.562  | 146.419 | 148.806  |  |  |
|       | ρ                                                                                            | $y_{yx_1} = 0.9,$ | $\boldsymbol{\rho}_{yx_2} = 0.$ | <b>9</b> , <i>y</i> , and <i>x</i> <sub>1</sub> | Have Gai | nma~(2,18 | B), $x_2$ Has Ga | amma~(2, | 10)     |          |  |  |
|       | Pr.m=                                                                                        | =25%              | Pr.m:                           | Pr.m=40%                                        |          | Pr.m=50%  |                  | Pr.m=60% |         | Pr.m=75% |  |  |
|       | RE.R                                                                                         | RE.P              | RE.R                            | RE.P                                            | RE.R     | RE.P      | RE.R             | RE.P     | RE.R    | RE.P     |  |  |
| n=20  | 255.647                                                                                      | 309.746           | 251.889                         | 321.866                                         | 251.577  | 314.671   | 247.474          | 302.013  | 239.466 | 294.802  |  |  |
| n=50  | 248.205                                                                                      | 299.51            | 255.597                         | 316.21                                          | 252.363  | 307.521   | 251.181          | 309.801  | 247.498 | 297.737  |  |  |
| n=80  | 248.458                                                                                      | 304.11            | 245.272                         | 296.609                                         | 249.226  | 303.727   | 250.659          | 306.127  | 250.73  | 303.693  |  |  |
| n=100 | 253.441                                                                                      | 314.397           | 254.62                          | 315.017                                         | 258.738  | 316.016   | 260.46           | 319.782  | 256.715 | 308.865  |  |  |
| n=150 | 257.933                                                                                      | 325.447           | 251.88                          | 314.917                                         | 252.704  | 319.755   | 254.056          | 324.094  | 252.739 | 311.276  |  |  |
| n=200 | 250.349                                                                                      | 313.303           | 253.923                         | 318.09                                          | 255.437  | 325.108   | 249.156          | 311.404  | 254.364 | 311.679  |  |  |
| n=250 | 254.639                                                                                      | 320.805           | 251.657                         | 305.747                                         | 250.112  | 306.831   | 249.945          | 306.72   | 251.635 | 313.634  |  |  |
| n=300 | 253.604                                                                                      | 312.218           | 253.149                         | 317.525                                         | 257.109  | 320.516   | 252.256          | 310.502  | 255.717 | 313.455  |  |  |
| n=350 | 256.906                                                                                      | 323.066           | 256.677                         | 319.67                                          | 249.038  | 309.514   | 250.856          | 315.726  | 251.403 | 311.992  |  |  |
| n=400 | 250.77                                                                                       | 310.425           | 251.083                         | 311.119                                         | 251.674  | 309.8     | 247.688          | 303.794  | 245.643 | 298.136  |  |  |

## Follow Table 3

|       | $\rho_{yx_1} = 0.7, \rho_{yx_2} = 0.9, y$ , and $x_1$ Have Gamma~(2,18), $x_2$ Has Gamma~(2,10) |         |          |         |          |         |          |         |          |         |  |  |  |
|-------|-------------------------------------------------------------------------------------------------|---------|----------|---------|----------|---------|----------|---------|----------|---------|--|--|--|
|       | Pr.m=25%                                                                                        |         | Pr.m=40% |         | Pr.m=50% |         | Pr.m=60% |         | Pr.m=75% |         |  |  |  |
|       | RE.R                                                                                            | RE.P    | RE.R     | RE.P    | RE.R     | RE.P    | RE.R     | RE.P    | RE.R     | RE.P    |  |  |  |
| n=20  | 178.429                                                                                         | 204.721 | 178.529  | 197.848 | 178.29   | 199.954 | 182.389  | 204.035 | 175.957  | 191.411 |  |  |  |
| n=50  | 187.301                                                                                         | 206.875 | 184.535  | 202.402 | 184.972  | 200.603 | 181.339  | 196.7   | 179.673  | 194.96  |  |  |  |
| n=80  | 181.536                                                                                         | 199.476 | 182.394  | 198.999 | 180.816  | 198.348 | 184.443  | 200.613 | 185.559  | 203.88  |  |  |  |
| n=100 | 187.234                                                                                         | 204.753 | 183.377  | 200.24  | 185.686  | 204.777 | 185.39   | 202.813 | 185.235  | 201.521 |  |  |  |
| n=150 | 182.9                                                                                           | 197.136 | 185.096  | 198.904 | 183.64   | 197.456 | 186.37   | 202.046 | 184.031  | 201.304 |  |  |  |
| n=200 | 185.03                                                                                          | 201.392 | 189.952  | 206.616 | 184.365  | 199.583 | 183.802  | 197.689 | 185.156  | 197.878 |  |  |  |
| n=250 | 184.821                                                                                         | 200.985 | 185.948  | 202.046 | 183.866  | 199.473 | 184.686  | 200.005 | 183.083  | 198.55  |  |  |  |
| n=300 | 186.437                                                                                         | 204.479 | 184.703  | 201.648 | 188.195  | 204.328 | 189.824  | 207.222 | 189.77   | 205.112 |  |  |  |
| n=350 | 182.175                                                                                         | 197.858 | 181.346  | 194.346 | 181.585  | 197.181 | 183.757  | 199.245 | 180.083  | 191.997 |  |  |  |
| n=400 | 184.243                                                                                         | 199.042 | 181.55   | 196.284 | 179.913  | 193.906 | 181.452  | 194.423 | 182.822  | 197.902 |  |  |  |

|       | $\rho_{yx_1} = 0.5, \rho_{yx_2} = 0.5, y, and x_1 Have Gamma~(2,18), x_2 has exp~(10)$ |                 |                      |             |                       |              |                          |            |          |         |  |  |  |
|-------|----------------------------------------------------------------------------------------|-----------------|----------------------|-------------|-----------------------|--------------|--------------------------|------------|----------|---------|--|--|--|
|       | Pr.m=                                                                                  | <u> </u>        | Pr.m=                |             |                       | =50%         | Pr.m:                    |            | Pr.m:    | =75%    |  |  |  |
|       | RE.R                                                                                   | RE.P            | RE.R                 | RE.P        | RE.R                  | RE.P         | RE.R                     | RE.P       | RE.R     | RE.P    |  |  |  |
| n=20  | 145.602                                                                                | 157.956         | 145.069              | 158.472     | 144.465               | 158.157      | 142.689                  | 156.531    | 137.673  | 148.186 |  |  |  |
| n=50  | 148.063                                                                                | 154.185         | 146.254              | 151.857     | 147.805               | 153.889      | 146.328                  | 151.118    | 145.496  | 150.911 |  |  |  |
| n=80  | 149.217                                                                                | 154.891         | 146.754              | 151.623     | 146.66                | 151.869      | 146.848                  | 152.692    | 146.731  | 153.673 |  |  |  |
| n=100 | 143.346                                                                                | 146.596         | 146.997              | 149.411     | 145.738               | 148.822      | 144.338                  | 147.412    | 144.817  | 148.011 |  |  |  |
| n=150 | 146.349                                                                                | 150.477         | 148.282              | 151.988     | 147.542               | 151.218      | 145.926                  | 148.867    | 144.159  | 146.831 |  |  |  |
| n=200 | 148.56                                                                                 | 152.318         | 149.279              | 152.905     | 147.356               | 150.645      | 146.866                  | 149.486    | 146.74   | 149.198 |  |  |  |
| n=250 | 146.816                                                                                | 150.307         | 145.224              | 147.924     | 146.31                | 149.033      | 147.037                  | 149.785    | 149.19   | 151.864 |  |  |  |
| n=300 | 148.334                                                                                | 151.344         | 148.747              | 152.118     | 146.775               | 149.375      | 145.886                  | 148.191    | 144.314  | 145.949 |  |  |  |
| n=350 | 148.521                                                                                | 151.218         | 146.555              | 148.904     | 147.087               | 148.884      | 145.925                  | 147.174    | 143.826  | 144.83  |  |  |  |
| n=400 | 147.995                                                                                | 149.954         | 143.825              | 144.825     | 147.054               | 148.827      | 146.63                   | 148.428    | 150.683  | 153.381 |  |  |  |
|       |                                                                                        |                 |                      | F           | ollow Tabl            | e <b>4</b> . |                          | •          |          |         |  |  |  |
|       |                                                                                        | $\rho_{yx_1} =$ | 0.9, $\rho_{yx_2} =$ | 0.9, y,and  | l x <sub>1</sub> Have | Gamma~(2     | 2,18),x <sub>2</sub> has | sexp~(10)  |          |         |  |  |  |
|       | Pr.m=                                                                                  | =25%            | Pr.m=                | :40%        | Pr.m                  |              | Pr.m:                    |            | Pr.m:    | =75%    |  |  |  |
|       | RE.R                                                                                   | RE.P            | RE.R                 | RE.P        | RE.R                  | RE.P         | RE.R                     | RE.P       | RE.R     | RE.P    |  |  |  |
| n=20  | 258.368                                                                                | 315.322         | 257.255              | 321.258     | 253.352               | 308.809      | 244.833                  | 289.963    | 243.773  | 288.824 |  |  |  |
| n=50  | 260.073                                                                                | 323.005         | 254.555              | 308.073     | 255.633               | 305.477      | 255.734                  | 308.704    | 251.716  | 301.142 |  |  |  |
| n=80  | 252.139                                                                                | 308.61          | 251.156              | 310.376     | 256.656               | 322.752      | 256.192                  | 314.355    | 248.415  | 297.119 |  |  |  |
| n=100 | 252.568                                                                                | 314.421         | 250.479              | 309.809     | 252.724               | 312.775      | 251.299                  | 309.121    | 248.772  | 304.829 |  |  |  |
| n=150 | 257.726                                                                                | 328.057         | 260.97               | 327.815     | 258.67                | 324.41       | 254.96                   | 321.124    | 258.133  | 328.071 |  |  |  |
| n=200 | 252.426                                                                                | 311.992         | 253.713              | 310.849     | 256.345               | 316.063      | 260.469                  | 328.342    | 259.068  | 323.096 |  |  |  |
| n=250 | 250.313                                                                                | 309.643         | 253.647              | 318.855     | 249.75                | 310.119      | 248.994                  | 307.026    | 252.788  | 313.212 |  |  |  |
| n=300 | 251.298                                                                                | 312.276         | 250.931              | 308.007     | 252.549               | 312.682      | 259.289                  | 323        | 252.938  | 314.576 |  |  |  |
| n=350 | 249.946                                                                                | 302.919         | 252.802              | 308.567     | 250.674               | 309.913      | 251.518                  | 313.752    | 251.706  | 312.489 |  |  |  |
| n=400 | 252.075                                                                                | 319.905         | 256.293              | 327.906     | 255.399               | 319.438      | 251.348                  | 308.671    | 259.17   | 317.669 |  |  |  |
|       |                                                                                        | $\rho_{yx_1}=0$ | $0.7, \rho_{yx_2} =$ | 0. 9, y,and | $x_1$ Have $C$        | amma~(2      | ,18),x <sub>2</sub> Has  | s Exp~(10) | 1        |         |  |  |  |
|       | Pr.m=                                                                                  |                 | Pr.m=                | 40%         | Pr.m=50%              |              | Pr.m=60%                 |            | Pr.m=75% |         |  |  |  |
|       | RE.R                                                                                   | RE.P            | RE.R                 | RE.P        | RE.R                  | RE.P         | RE.R                     | RE.P       | RE.R     | RE.P    |  |  |  |
| n=20  | 184.198                                                                                | 211.746         | 182.875              | 206.854     | 184.273               | 207.394      | 179.321                  | 202.271    | 174.777  | 194.697 |  |  |  |
| n=50  | 181.48                                                                                 | 196.863         | 182.216              | 198.841     | 181.976               | 197.692      | 178.326                  | 192.859    | 180.239  | 194.383 |  |  |  |
| n=80  | 186.978                                                                                | 205.538         | 181.419              | 195.748     | 182.182               | 197.15       | 182.24                   | 197.646    | 180.878  | 196.884 |  |  |  |
| n=100 | 182.885                                                                                | 198.076         | 181.979              | 197.381     | 179.237               | 194.332      | 180.945                  | 195.297    | 180.372  | 193.565 |  |  |  |
| n=150 | 183.28                                                                                 | 199.388         | 183.118              | 198.984     | 186.703               | 204.919      | 183.054                  | 197.538    | 180.693  | 195.026 |  |  |  |
| n=200 | 186.354                                                                                | 202.623         | 184.937              | 202.107     | 182.421               | 196.287      | 182.344                  | 195.797    | 184.005  | 199.276 |  |  |  |
| n=250 | 187.978                                                                                | 202.491         | 187.127              | 203.055     | 186.851               | 200.6        | 185.923                  | 200.268    | 183.438  | 195.766 |  |  |  |
| n=300 | 183.595                                                                                | 198.386         | 184.644              | 202.756     | 186.158               | 200.754      | 180.903                  | 193.002    | 182.226  | 194.058 |  |  |  |
| n=350 | 185.28                                                                                 | 201.423         | 182.659              | 197.533     | 182.895               | 196.716      | 180.393                  | 193.736    | 182.115  | 196.458 |  |  |  |
| n=400 | 182.777                                                                                | 196.264         | 183.419              | 197.337     | 185.325               | 199.257      | 184.836                  | 197.959    | 182.877  | 196.519 |  |  |  |

Table 4: Relative Efficiency of Multi-Ratio and Multi-Power Method of Multi-Auxiliary Variables

## **CONCLUSIONS**

In most applied cases, the estimator obtained from the multi-power transformation method of imputation has shown to remain better than the estimator obtained from the multi-ratio method of imputation and hence the multi-mean method of imputation. If the non-response rate increases from 10% to 40%, then the efficiency of the method increases, where the non-response rate more than 40%, the estimated data is the original of the data, then, the efficiency of the method decreases, and if the correlation increases between the variable y and multi-auxiliary variables, then the efficiency of the method increases. That is, there are no significant differences between the relative efficiency of the estimation methods that are presented in this paper when we find that the number of missing units is very few

#### **REFERENCES**

- Almongy, H. (2012). Advances in some statistical methods to increase the efficiency of post-enumeration survey. PhD. Degree, Applied Statistics and Insurance Dep. Faculty of Commerce-Mansoura University.
- 2. Abdel-Aziz, A. (2015). Treating Missing Data. PhD. Degree, Mathematical Statistics Dep. Institute of Statistical Studies and ResearchCairo University.
- 3. Bratley, P., Fox, B. L., & Schrage, L. E. (2011). A guide to simulation. Springer Science & Business Media.
- 4. Cochran, W. G., & William, G. (1977). Sampling techniques. New York: John Wiley& Sons.
- 5. Garcia MR, Cebrian AA (1996) Repeated substitution method: The ratio estimator for the population variance. Metrika, 43,101-105.
- 6. Montgomery, D. C., & Runger, G. C. (2010). Applied statistics and probability for engineers. John Wiley & Sons.
- 7. Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models (Vol. 4, p. 318). Chicago: Irwin.
- 8. Olkin, I. (1958). Multivariate ratio estimation for finite populations. Biometrika, 45(1/2), 154-165.
- 9. Rao, J. N., & Sitter, R. R. (1995). Variance estimation under two-phase sampling with application to imputation for missing data. Biometrika, 82(2), 453-460.
- 10. Singh, S., & Horn, S. (2000). Compromised imputation in survey sampling. Metrika, 51(3), 267-276.
- 11. Singh, S. (2000). Estimation of variance of regression estimator in two phase sampling. Calcutta Statistical Association Bulletin, 50(1-2), 49-64.
- 12. Mehta, Nitu, And Vl Mandowara. "Advanced Estimator In Stratified Ranked Set Sampling Using Auxiliary Information."
- 13. Singh, S. (2001). Generalized calibration approach for estimating variance in survey sampling. Annals of the Institute of Statistical Mathematics, 53(2), 404-417.
- 14. Singh, S., &Deo, B. (2003). Imputation by power transformation. Statistical Papers, 44(4), 555-579.
- 15. Srivastava, S. K. (1967). An estimator using auxiliary information in sample surveys. Calcutta Statistical Association Bulletin, 16(2-3), 121-132.