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ABSTRACT 

Sampling methods are often accompanied by sampling errors in collecting data. They have  associated with the 

design the chosen sample which can be handled in some way or another based on theoretically known styles in this field or 

by using the comprehensive census type. However, the people concerned with preparing and implementing statistical work 

face non-random errors. Which are not less dangerous than errors connected with sampling method.                                  

Whether what has been chosen partially of the population or by containing all items. These non-random errors weaken the 

collected data efficiency. Because it is difficult to discover or to know: That is due to non-technical methods to handle 

them. In this paper focuses on the estimation of non-response of multi-auxiliary information of a finite population and 

infinite population. A comparison study is made between three methods of estimation using the multi-auxiliary 

information; these methods are multi-mean imputation, multi-ratio method of imputation and multi-power transformation 

method of imputation, through a randomized response technique. The relative efficiency was used to conclude the best 

methods by using empirically study (real data and simulation). 
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1. INTRODUCTION 

Sampling methods are often accompanied by sampling errors in collecting data. They have  associated with the 

design the chosen sample which can be handled in some way or another based on theoretically known styles in this field or 

by using the comprehensive census type. However, the people concerned with preparing and implementing statistical work 

face non-random errors. Which are not less dangerous than errors connected with sampling methods. Data are subjected to 

non-random errors, whether collected from some items of the population or all the components of the population, meaning 

that, they do not decrease by increasing size of the sample as in the random errors. Missing data is a very common problem 

in most empirical research areas. The problem of missing data in survey sampling is called the problem of nonresponse. 

Missing data is present if the researcher fails to get the information from the sample. Different reasons can cause                

non-response such as the investigator refusal to answer, inaccessible, unable to answer, lack of information and so on.                   

These non-random errors weaken the collected data efficiency because it is difficult to discover or to know. That is due to 

non-technical methods to handle them, where the non-response or missing data represents a huge problem in many studies 
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and scientific researches Singh and Deo (2003). Undoubtedly, the sometimes of failure to account for the stochastic nature 

of missing data or nonresponse data can spoil the nature of data.  Nature incomplete random data may be lead to distort the 

nature of original data. The auxiliary information has been used in improving the precision of the estimate of a parameter 

(see Cochran (1977)). Auxiliary variables are used to improve the efficiency of estimators at the estimation stage and it 

could be available in several forms. These errors are divided into complete non- responsiveness or partial                             

non- responsiveness. The efficiency of a biased estimator is measured by the reciprocal of the amount of its mean square 

error (MSE). Thus the smaller the MSE the more the precision/efficiency of the estimator. In many sample surveys 

reduction in MSE, even by a very small amount, plays an important role and increases efficiency significantly of the             

over-all estimators. For more details on such methods, one can refer to Singh (2001), Singh and Horn (2000), Bratley. et al 

(2011), Aziz (2015) and Garcia and Cebrian (1996). 

Assuming simple random sampling, we present three methods of estimation, Multi-Mean, Multi-Ratio and                  

Multi-Power Transformation to estimate Non-Response of Multi-Auxiliary Information. In general, the power 

transformation estimator is shown to possess a smaller variance than the Mean and the Ratio estimators, see Almongy 

(2012). We compare between the results of these methods of estimation using empirical study. 

2. MULTI-AUXILIARY INFORMATION 

Let �� = ��� ∑ �	
	�� be the mean of the finite population� = 1,2, …��,a simple random sample without-

replacement,� of size �is drawn from � to estimate �.�  Let � be the number of responding units out of sampled � units. Let 

the set of responding units be denoted by � and that of non-responding units be denoted by�\. For every unit � ∈ �, the 

value �	  is observed. However, for the units � ∈ �\,	the �	  values are missing and imputed values are derived. We assume 

that imputation is carried out with the aid of multi-auxiliary variable, 

 � = ��	 !"×$, %� = 1,2, … , �; 	' = 1,2, … , () 
Such that �	 , the value of � for unit �,and auxiliaryvariable ', is known and positive for every� ∈ � = � ∪ �\.                  
In other words, the data � + = �	 ∶ � ∈ ��are known. Following the notation of the Singh and Deo (2003). Singh 

and Deo (2003) present the case of single value imputation depending single auxiliary variable, but we present the 

case of single value imputation depending on multi-auxiliary variables. Let 

� = ��	 !"×$, %� = 1,2, … , �; 	' = 1,2, … , ()be the � × ( matrix ofthe( −auxiliary vectors associated with the 

study variable �,such that  

 � = .��� ⋯ ��$⋮ ⋱ ⋮�"� ⋯ �"$2 = ��	 !"×$ 

It is assumed that full information is available on the multi-auxiliary variables, but responses are missing only for 

the study variable. In this situation, we suggest here some method of imputation following the notation of the Singh and 

Deo (2003). 

2.1. Multi-Mean Imputation 

Under the mean method of imputation, the data after imputation take the form 
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 34⋆ = 6 34	47	4 ∈ 8
39	47	4 ∈ 8\ :                              (1) 

where 

 3;; = 9�< ∑ 3494�< =	39,                             (2) 

 �+ = �"∑ �	⋆"	�� ,                                  (3) 

such that 

 �= = ��� ∑ �	=	�� , �= = ��� ∑ �	 =	�� >�?�+ = ��� ∑ �	 "	��  

2.2. Multi-Ratio Estimator 

This method of imputation is called the multi-ratio method of imputation. Under this method of imputation, the 

data becomes 

 34⋆ = @ 34, 4 ∈ 8	
39 AB∏ DE	BFE	9FGHF�< − 9I ∑ E4FHFJ<∑ ∑ E4FHFJ<4∈8\ , 4 ∈ 8	 :                           (4) 

and the point estimator of �KL becomes 

 3;M = 39 ∏ DE	BFE	9FGHF�<                                (5) 

Which is clearly multi-ratio type estimator as proposed by Olkin (1958). 

The estimator obtained from the multi-ratio method of imputation has shown to remain better than the estimator 

obtained from the multi-mean method of imputation. 

2.3. Multi-Power Transformation 

Singh and Deo (2003) suggested this method of imputation where, 

 34⋆ = @ 34, 4 ∈ 8
39 AB∏ DE	BFE	9FGNFHF�< − 9I ∑ E4FHFJ<∑ ∑ E4FHFJ<4∈8\ , 4 ∈ 8\ :                           (6) 

whereO  is a suitably chosen constant, such that the variance of the resultant estimator is minimum,                          

and ∏ � = ���P …�$$ �� denote the product of p-terms. Under this method of imputation, the point estimator of�+ becomes 

 3;Q = 39 ∏ DE	BFE	9FGNFHF�<                               (7) 

Which is a generalization of Srivastava (1967) estimator for multi-auxiliary information. In these situations, we 

are suggesting an estimator as 

 O = R̅TU+VUWX�T+VUY  
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SinceZRUP 	��	>	[>��>�\] of Auxiliary variable � andZRUX is a covariance of Multi-Auxiliary variables following 

Cochran (1977), the minimum variance of the estimator �K^ is given by 

 _�3;Q! = `<B − <ab c3d `< − M3.E<Ed…EHd b                             (8) 

whereeX.RfRY…Rgdenotes the multiple correlation coefficient. 

 Following Rao and Sitter%1995), it is not clear how to use multi-auxiliary information while doing imputation 

with ratio method of imputation. Use of multi-auxiliary information in survey sampling has more practical use than using 

the single variable. 

Almongy(2012), proved theoretically that the estimator obtained from the power transformation method of 

imputation has shown to remain better than the estimator obtained from the ratio method of imputation and hence the mean 

method of imputation. One can easily observe that ifO = 1	∀	' = 1,2, … , ( then, the multi-power method of imputation 

becomes the multi-ratio estimator. The multivariate product estimator can be easily derived by choosing                                O = −1	∀	' = 1,2, … , (. 
3. EMPIRICAL STUDY 

For the purpose of the empirical study, we consider two types of population finite populations (Real Data), and 

infinite populations (Simulation). The method discussed in the previous section is not practicable if the optimum value of O  is unknown, but fortunately the optimum value of O  is given. 

3.1. Real Data  

Case 1: This study will show that the multi-power transformation method over the multi-ratio method of 

imputation and hence the multi-mean method of imputation, we resort to the empirical study with finite populations 

available. We consider a finite population of N = 15units given by Neter. et al (1983). We select all possible samples of 

n=7, 6, 5 units, which results in 

k = `�l"mb = 6435, 5005, 3003	�>r(s]�	; 	� = 1,2,3	respectively and we remover	 = 1, 2, 3, 4unitsrandomly 

from each sample corresponding to the study variable �.Then the removed units were imputed with three methods: 

• Multi-Mean method, �t(say). 

• Multi-Ratio (or product) method, �L, depending upon the sign of correlation. 

• Multi-power transformation method withO = Ou,say�^. 

 Mv. F = ∑ w�3x!y�z{d|yJ<∑ A`3Fby�zId|yJ< × <xx, F = M, Q                             (9) 

The relative efficiency of the multi-ratio (e}. e) and the multi-power (e}. ~) with respect to multi-mean method 

of imputation is shown in Table 1. The same process is repeated with other finite populations (Table 2.) as shown in              

Table 1. 
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Table 1: Relative Efficiency of the Multi-Ratio and Multi-Power Methods of  
        Imputation with Respect Tomulti-Mean Method of Imputation 

 
;< = < ;d = d ;� = � ;� = � 

 
RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P 

n=7 119.168 121.874 121.851 128.064 236.372 256.289 374.497 415.251 
n=6 122.540 124.013 136.771 143.036 272.531 280.616 472.615 548.634 
n=5 112.079 114.93 206.593 220.619 273.388 364.9043 531.497 652.465 

 
Case 2: In this section, we consider a finite population of �	 = 	25 units given by Montgomery and et al (2010). 

We select all possible samples of � = 6, 5 units, which results in 

k = `Pl"mb = 177100, 53130	samples	; 	i = 1,2	respectively and we remover	 = 1, 2, 3 units randomly from 

each sample corresponding to the study variable �. 

Table 2: Relative Efficiency of the Multi-Ratio and Multi-Power Methods of  
        Imputation with Respect to Multi-Mean Method of Imputation 

 
;< = < ;d = d ;� = � 

 
RE.R RE.P RE.R RE.P RE.R RE.P 

n=6 100.226 109.688 208.889 479.416 241.482 501.321 
n=5 100.492 115.697 251.018 512.996 243.172 518.509 

 
We notice the greater the number of missing then increase of efficiency obviously, since if decrease value of a 

number of sample size and increase value of the number of missing data then increase efficiency. Almongy (2012), 

concluded that there are  no significant differences between the relative efficiency of the estimation methods, which are 

presented in this paper when we find that the number of missing units is very few. 

3.2. Simulation 

The size � of these populations is unknown. We generated � random numbers, �	⋆, �	 = 	1,2. . . , �, from a 

transformed variables, given by 

 34 	= 	<x. x +	�c3d�< − �E<,3d!34⋆ 	+ �E<,3c3E4<⋆ + �c3d�< − �Ed,3d!34⋆ + �Ed,3c3E4d⋆                       (10) 

and�	� = 	50.0 +	ZRf�	�⋆  and �	P = 	50.0 +	ZRY�	P⋆  for different values of the correlation coefficient �Rf,X and �RY,Xand �� = 	10.0. We generate 10,000 samples each of size �. From the��ℎ sample of � units, we removed randomly %� − �) units and the remaining sample units were considered to be responding. The missing values are imputed by using 

different methods of imputation. The empirical mean square error of the resultant estimators is computed as 

 |cv	�3�F! = <<x,xxx∑ w3�F� − z�{d<x,xxx��< , F = ;,M, Q                         (11) 

The relative efficiency of the estimators based on proposed methodwith respect to usual estimator is calculated as 

 Mv. F = |cv�3;!|cv`3Fb × <xx, F = M, Q                             (12) 

The results obtained are shown in Table 3. We conclude that the estimator �^ remains better than � , ' = r, e. 

Due to symmetric relationship of the efficiency of the multi-ratio (RE.R) and the multi-power (RE.P) of estimator with 

respect to sample mean, A the nonresponse rate Pr.m is %	25%, 40%, 50%, 60%	and	75%)from all samples, the relative 
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efficiency figures remains almost the same for the given value of correlation coefficient. For example in Table 3, let that 

the �, ��>�?�P have gamma distribution with a parameters y	and	��~�>rr>%2, 18) and	�P~�>rr>%2,10), as shown in 

the following tables. 

    

Figure 1: Plot Gamma Distribution 

From table, 3.we find that, if Pr.m=25% rate of non-response is available then the gain in efficiency of the multi-

ratio estimator remains between 13% to 17% and the multi-power estimator remains between 15% to 26% for                   �XRf = 0.5	and  �XRY = 0.5. As the value of correlations coefficient increases to 0.9, then the corresponding values of the 

gain in efficiency of the multi-ratio estimator lies between 147% to 156%, but that of the multi-power estimator lies 

between 198% to 212%. 

From table, 3.We find that, if Pr.m = 40% rate of non-response is available then the gain in efficiency of the 

multi-ratio estimator remains between 13% to 18% and the multi-power estimator remains between 15% to 27% for �XRf = 0.5	and �XRY = 0.5. As the value of correlations coefficient increases to 0.9, then the corresponding values of the 

gain in efficiency of the multi-ratio estimator lie between 145% to 156%, but that of the multi-power estimator lie between 

196% to 222%, and so on.  

Table 3: Relative Efficiency of Multi-Ratio and Multi-Power Method of Multi-Auxiliary Variables �3E< = x. �, �3Ed = x. �, 3,and E< Have Gamma~(2,18),Ed Has Gamma~%d, <x) 
 

Pr.m=25% Pr.m=40% Pr.m=50% Pr.m=60% Pr.m=75% 
RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P 

n=20 113.94 126.256 113.172 127.102 110.906 124.2 113.318 126.641 111.859 123.541 
n=50 114.826 120.292 116.485 122.082 115.255 120.322 115.994 120.762 113.425 118.925 
n=80 118.482 121.172 116.988 120.36 114.448 118.03 111.753 116.161 112.787 116.863 

n=100 116.92 119.922 118.378 121.002 115.851 119.377 114.769 118.418 114.077 118.134 
n=150 114.813 118.175 116.359 118.533 115.681 118.218 115.503 118.731 114.376 117.144 
n=200 116.938 117.8 116.06 117.819 117.059 119.458 116.897 119.019 116.348 118.117 
n=250 113.531 116.54 113.28 115.616 114.786 116.841 115.016 117.185 115.003 116.857 
n=300 114.309 115.64 115.116 116.861 115.402 116.948 114.042 115.769 115.729 117.306 
n=350 115.321 117.066 115.345 117.099 115.909 117.013 114.681 115.902 116.821 117.673 
n=400 115.256 116.526 116.346 117.082 115.273 117.28 115.338 117.347 114.689 117.721 �3E< = x. �, �3Ed = x. �, 3,and E< Have Gamma~(2,18),Ed Has Gamma~%d, <x) 

 
Pr.m=25% Pr.m=40% Pr.m=50% Pr.m=60% Pr.m=75% 

RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P 
n=20 124.915 138.702 124.412 138.217 122.367 136.652 122.142 136.611 124.725 139.062 
n=50 126.407 131.799 126.851 130.965 127.926 132.409 127.05 131.921 126.459 130.901 
n=80 129.987 133.175 128.83 131.101 127.5 129.393 127.055 129.056 125.604 128.366 

n=100 126.782 128.68 128.33 131.639 130.032 133.288 128.258 131.343 127.339 129.853 
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n=150 129.857 131.076 130.979 131.759 128.278 129.67 128.497 130.09 131.175 132.094 
n=200 126.279 127.498 125.353 126.553 127.235 128.741 126.038 127.497 124.365 125.669 
n=250 127.74 128.554 128.287 129.136 128.17 128.903 126.224 126.806 127.401 127.984 
n=300 131.903 133.219 132.579 133.425 132.63 133.394 131.352 132.245 127.385 128.163 
n=350 126.346 126.749 125.251 125.727 127.764 128.565 127.197 128.197 127.384 128.667 
n=400 129.106 129.795 128.012 128.358 124.131 124.71 123.557 123.775 125.34 126.001 

 
Follow Table 3 �3E< = x. �, �3Ed = x. �, 3,and E< Have Gamma~(2,18),Ed Has Gamma~%d, <x) 

 
Pr.m=25% Pr.m=40% Pr.m=50% Pr.m=60% Pr.m=75% 

RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P 
n=20 144.691 158.494 143.481 161.285 141.819 156.864 144.241 159.365 140.184 153.059 
n=50 144.237 151.053 143.722 150.942 144.134 150.479 145.524 152.497 146.532 154.638 
n=80 147.986 153.613 147.791 153.173 144.829 149.409 144.379 148.703 145.219 148.845 

n=100 148.696 153.081 145.736 150.067 144.176 148.773 142.709 146.496 142.213 144.7 
n=150 145.992 148.548 147.264 150.104 146.465 148.578 146.917 149.261 147.075 150.224 
n=200 142.893 144.209 144.857 146.533 143.645 145.745 142.223 143.509 142.3 143.577 
n=250 146.481 149.057 144.669 147.312 146.106 149.072 147.053 149.995 148.776 152.237 
n=300 147.941 150.484 149.39 152.95 151.593 155.6 149.839 153.168 148.345 150.823 
n=350 146.895 148.669 143.7 145.853 141.975 143.705 143.382 145.146 142.281 143.421 
n=400 151.903 154.524 149.569 152.02 150.312 153.401 149.705 152.562 146.419 148.806 �3E< = x. �, �3Ed = x. �, 3,and E< Have Gamma~(2,18),Ed Has Gamma~%d, <x) 

 
Pr.m=25% Pr.m=40% Pr.m=50% Pr.m=60% Pr.m=75% 

RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P 
n=20 255.647 309.746 251.889 321.866 251.577 314.671 247.474 302.013 239.466 294.802 
n=50 248.205 299.51 255.597 316.21 252.363 307.521 251.181 309.801 247.498 297.737 
n=80 248.458 304.11 245.272 296.609 249.226 303.727 250.659 306.127 250.73 303.693 

n=100 253.441 314.397 254.62 315.017 258.738 316.016 260.46 319.782 256.715 308.865 
n=150 257.933 325.447 251.88 314.917 252.704 319.755 254.056 324.094 252.739 311.276 
n=200 250.349 313.303 253.923 318.09 255.437 325.108 249.156 311.404 254.364 311.679 
n=250 254.639 320.805 251.657 305.747 250.112 306.831 249.945 306.72 251.635 313.634 
n=300 253.604 312.218 253.149 317.525 257.109 320.516 252.256 310.502 255.717 313.455 
n=350 256.906 323.066 256.677 319.67 249.038 309.514 250.856 315.726 251.403 311.992 
n=400 250.77 310.425 251.083 311.119 251.674 309.8 247.688 303.794 245.643 298.136 

 
Follow Table 3 �3E< = x. �, �3Ed = x. �, 3,and E< Have Gamma~(2,18),Ed Has Gamma~%d, <x) 

 
Pr.m=25% Pr.m=40% Pr.m=50% Pr.m=60% Pr.m=75% 

RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P 
n=20 178.429 204.721 178.529 197.848 178.29 199.954 182.389 204.035 175.957 191.411 
n=50 187.301 206.875 184.535 202.402 184.972 200.603 181.339 196.7 179.673 194.96 
n=80 181.536 199.476 182.394 198.999 180.816 198.348 184.443 200.613 185.559 203.88 

n=100 187.234 204.753 183.377 200.24 185.686 204.777 185.39 202.813 185.235 201.521 
n=150 182.9 197.136 185.096 198.904 183.64 197.456 186.37 202.046 184.031 201.304 
n=200 185.03 201.392 189.952 206.616 184.365 199.583 183.802 197.689 185.156 197.878 
n=250 184.821 200.985 185.948 202.046 183.866 199.473 184.686 200.005 183.083 198.55 
n=300 186.437 204.479 184.703 201.648 188.195 204.328 189.824 207.222 189.77 205.112 
n=350 182.175 197.858 181.346 194.346 181.585 197.181 183.757 199.245 180.083 191.997 
n=400 184.243 199.042 181.55 196.284 179.913 193.906 181.452 194.423 182.822 197.902 
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Table 4: Relative Efficiency of Multi-Ratio and Multi-Power Method of Multi-Auxiliary Variables �3E< = x. �, �3Ed = x. �,	3,and E< Have Gamma~(2,18),Ed hasexp~(10) 

 
Pr.m=25% Pr.m=40% Pr.m=50% Pr.m=60% Pr.m=75% 

RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P 
n=20 145.602 157.956 145.069 158.472 144.465 158.157 142.689 156.531 137.673 148.186 
n=50 148.063 154.185 146.254 151.857 147.805 153.889 146.328 151.118 145.496 150.911 
n=80 149.217 154.891 146.754 151.623 146.66 151.869 146.848 152.692 146.731 153.673 

n=100 143.346 146.596 146.997 149.411 145.738 148.822 144.338 147.412 144.817 148.011 
n=150 146.349 150.477 148.282 151.988 147.542 151.218 145.926 148.867 144.159 146.831 
n=200 148.56 152.318 149.279 152.905 147.356 150.645 146.866 149.486 146.74 149.198 
n=250 146.816 150.307 145.224 147.924 146.31 149.033 147.037 149.785 149.19 151.864 
n=300 148.334 151.344 148.747 152.118 146.775 149.375 145.886 148.191 144.314 145.949 
n=350 148.521 151.218 146.555 148.904 147.087 148.884 145.925 147.174 143.826 144.83 
n=400 147.995 149.954 143.825 144.825 147.054 148.827 146.63 148.428 150.683 153.381 

Follow Table 4. �3E< = x. �, �3Ed = x. �,	3,and E< Have Gamma~(2,18),Ed hasexp~(10) 

 
Pr.m=25% Pr.m=40% Pr.m=50% Pr.m=60% Pr.m=75% 

RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P 
n=20 258.368 315.322 257.255 321.258 253.352 308.809 244.833 289.963 243.773 288.824 
n=50 260.073 323.005 254.555 308.073 255.633 305.477 255.734 308.704 251.716 301.142 
n=80 252.139 308.61 251.156 310.376 256.656 322.752 256.192 314.355 248.415 297.119 
n=100 252.568 314.421 250.479 309.809 252.724 312.775 251.299 309.121 248.772 304.829 
n=150 257.726 328.057 260.97 327.815 258.67 324.41 254.96 321.124 258.133 328.071 
n=200 252.426 311.992 253.713 310.849 256.345 316.063 260.469 328.342 259.068 323.096 
n=250 250.313 309.643 253.647 318.855 249.75 310.119 248.994 307.026 252.788 313.212 
n=300 251.298 312.276 250.931 308.007 252.549 312.682 259.289 323 252.938 314.576 
n=350 249.946 302.919 252.802 308.567 250.674 309.913 251.518 313.752 251.706 312.489 
n=400 252.075 319.905 256.293 327.906 255.399 319.438 251.348 308.671 259.17 317.669 �3E< = x. �, �3Ed = x. �, 3,and E< Have Gamma~(2,18),Ed Has Exp~(10) 

 
Pr.m=25% Pr.m=40% Pr.m=50% Pr.m=60% Pr.m=75% 

RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P RE.R RE.P 
n=20 184.198 211.746 182.875 206.854 184.273 207.394 179.321 202.271 174.777 194.697 
n=50 181.48 196.863 182.216 198.841 181.976 197.692 178.326 192.859 180.239 194.383 
n=80 186.978 205.538 181.419 195.748 182.182 197.15 182.24 197.646 180.878 196.884 
n=100 182.885 198.076 181.979 197.381 179.237 194.332 180.945 195.297 180.372 193.565 
n=150 183.28 199.388 183.118 198.984 186.703 204.919 183.054 197.538 180.693 195.026 
n=200 186.354 202.623 184.937 202.107 182.421 196.287 182.344 195.797 184.005 199.276 
n=250 187.978 202.491 187.127 203.055 186.851 200.6 185.923 200.268 183.438 195.766 
n=300 183.595 198.386 184.644 202.756 186.158 200.754 180.903 193.002 182.226 194.058 
n=350 185.28 201.423 182.659 197.533 182.895 196.716 180.393 193.736 182.115 196.458 
n=400 182.777 196.264 183.419 197.337 185.325 199.257 184.836 197.959 182.877 196.519 

 
CONCLUSIONS 

In most applied cases, the estimator obtained from the multi-power transformation method of imputation has 

shown to remain better than the estimator obtained from the multi-ratio method of imputation and hence the multi-mean 

method of imputation. If the non-response rate increases from 10% to 40%, then the efficiency of the method increases, 

where the non-response rate more than 40%, the estimated data is the original of the data, then, the efficiency of the 

method decreases, and if the correlation increases between the variable y and multi-auxiliary variables, then the efficiency 

of the method increases. That is, there are  no significant differences between the relative efficiency of the estimation 

methods that are presented in this paper when we find that the number of missing units is very few 
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